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A B S T R A C T   

The accurate prediction of the relative solvent accessibility of a protein is critical to understanding its 3D 
structure and biological function. In this study, a novel deep multi-view feature learning (DMVFL) framework 
that integrates three different neural network units, i.e., bidirectional long short-term memory recurrent neural 
network, squeeze-and-excitation, and fully-connected hidden layer, with four sequence-based single-view fea-
tures, i.e., position-specific scoring matrix, position-specific frequency matrix, predicted secondary structure, and 
roughly predicted three-state relative solvent accessibility probability, is developed to accurately predict relative 
solvent accessibility information of protein. On the basis of this newly developed framework, one new protein 
relative solvent accessibility predictor was proposed and called DMVFL-RSA, which employs a customized 
multiple feedback mechanism that helps to extract discriminative information embedded in the four single-view 
features. In benchmark tests on TEST524 and CASP14-derived (CASP14set) datasets, DMVFL-RSA outperforms 
other existing state-of-the-art protein relative solvent accessibility predictors when predicting two-state (expo-
sure threshold of 25%), three-state (exposure thresholds of 9% and 36%), and four-state (exposure thresholds of 
4%, 25%, and 50%) discrete values. For real-valued prediction on TEST524 and CASP14set, DMVFL-RSA has also 
gained high Pearson correlation coefficient values, indicating a positive correlation between the predicted and 
native relative solvent accessibility. Detailed analyses show that the major advantages of DMVFL-RSA lie in the 
high efficiency of the DMVFL framework, the applied multiple feedback mechanism, and the strong sensitivity of 
the sequence-based features. The web server of DMVFL-RSA is freely available at https://jun-csbio.github.io/D 
MVFL-RSA/for academic use. The standalone package of DMVFL-RSA is downloadable at https://github.com/Xu 
eQiangFan/DMVFL-RSA.   

1. Introduction 

The relative solvent accessibility (RSA) of protein is closely related to 
the spatial arrangement and packing of amino acid residues and thus is 
an important local structural characteristic for studying protein folding 
and functions [1–4]. Although wet-laboratory experiments can be used 
to measure the protein RSA, these tests are expensive and time 
consuming. In the post-genomic era with an avalanche of newly 
emerging protein sequences, developing a computationally efficient 
method that accurately predicts the RSA information of any protein is 
highly necessary. In view of this situation, a number of protein RSA 
predictors are continuously being designed. 

Most existing predictors use statistical and machine-learning algo-
rithms based on protein sequence information to predict the protein RSA 
information. According to the prediction modes, the existing predictors 
can be roughly divided into two categories, i.e., discrete-valued and real- 
valued predictors. For discrete-valued predictors, the RSA information 
of each residue is labeled as one of the multiple classified states using 
different exposure thresholds. For instance, in two-state discrete-valued 
predictors, the two states, i.e., exposed and buried, are generally sorted 
by an exposure threshold of 25%. In three-state discrete-valued pre-
dictors, the three states, i.e., exposed, intermediate, and buried, are 
classified by two exposure thresholds. In the early stage, the discrete- 
valued predictors, including SVMpsi [5], RaptorX [6], ACCpro5 [7], 

* Corresponding author. 
** Corresponding author., 
*** Corresponding author. 

E-mail addresses: hujunum@zjut.edu.cn (J. Hu), njyudj@njust.edu.cn (D.-J. Yu), zgj@zjut.edu.cn (G.-J. Zhang).  

Contents lists available at ScienceDirect 

Analytical Biochemistry 

journal homepage: www.elsevier.com/locate/yabio 

https://doi.org/10.1016/j.ab.2021.114358 
Received 8 June 2021; Received in revised form 22 August 2021; Accepted 25 August 2021   

https://jun-csbio.github.io/DMVFL-RSA/
https://jun-csbio.github.io/DMVFL-RSA/
https://github.com/XueQiangFan/DMVFL-RSA
https://github.com/XueQiangFan/DMVFL-RSA
mailto:hujunum@zjut.edu.cn
mailto:njyudj@njust.edu.cn
mailto:zgj@zjut.edu.cn
www.sciencedirect.com/science/journal/00032697
https://www.elsevier.com/locate/yabio
https://doi.org/10.1016/j.ab.2021.114358
https://doi.org/10.1016/j.ab.2021.114358
https://doi.org/10.1016/j.ab.2021.114358
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ab.2021.114358&domain=pdf


Analytical Biochemistry 631 (2021) 114358

2

BMRSA [8], PaleAle 4.0 [9], and PaleAle 5.0 [10], dominated the field of 
solvent accessibility prediction. However, their common drawback is 
the inability to accurately predict the real number value of RSA for each 
residue, thus seriously restricts their applicability. 

Real-valued predictors can predict the discrete state and the real 
number value of RSA for each residue in a protein, thus overcoming the 
defects of discrete-valued predictors. To name a few: NETASA [11], Net-
Surfp [12], SVM-Cabins [13], SANN [14], PredRSA [15], PSO-SVR [16], 
QBES [17], SPIDER2 [18], SPIDER3 [19], SPIDER3-Single [20], 
NetSurfP-2.0 [21], and SPOT-1D [22]. These predictors generally utilize 
the protein sequence information and appropriate machine-learning al-
gorithms to predict the RSA information of each protein residue. For 
example, in NETASA [11], a neural network-based method, which only 
takes the simple binary encoding of amino acid sequence information as its 
input features, is used to predict the real-valued protein RSA. In SANN [14], 
PSI-BLAST [23] is employed to generate sequence profiles that are fed into 
the algorithm of k-nearest neighbor to solve real-valued prediction and 
two-state and three-state discrete-valued predictions. In SPIDER2 [18], 
position-specific scoring matrix profile with a sliding window size of 17 (8 
on either side of each query residue) is exploited to train an iterative 
deep-learning neural network for the real-valued prediction of protein 
RSA. In SPIDER3 [19], the bidirectional long short-term memory recurrent 
neural network (BiLSTM) [24] algorithm is applied to extract discrimina-
tive information from three different feature views, i.e., position-specific 
scoring matrix, physiochemical properties [25], and hidden Markov 
Model profiles [26], and accurately predict the real-valued protein RSA. In 
SPIDER3-Single [20], only one-hot vector is fed into the bidirectional long 
short-term memory recurrent neural networks for predicting the 
real-valued protein RSA. In NetSurfP-2.0 [21], two different sequence 
profiles generated using the HH-suite and MMseqs2 tools are employed as 
features to train the solvent accessibility prediction model using an archi-
tecture composed of convolutional and long short-term memory neural 
networks. In SPOT-1D [22], six discriminative feature views, i.e., 
position-specific scoring matrix, hidden Markov Model profiles [26], 
SPIDER3-predicted RSA [19], SPOT-Contact-predicted contact map [27], 
CCMpred-predicted contact map [28], and evolutionary coupling infor-
mation [29,30], are serially combined to feed into the prediction model, 
which is trained via an ensemble of recurrent and residual convolutional 
neural networks. Although these predictors have achieved considerable 
progress in predicting the real number value of protein RSA, their accuracy 
is still not satisfactory. The main reason for this lies in that most of existing 
real-valued predictors, using one single-view feature or simply concate-
nating multiple single-view features in series as input, could not provide 
sufficiently discriminative information. There is an urgent need for 
designing new high-performance real-valued predictors. 

In this study, a novel real-valued predictor called DMVFL-RSA was 
developed to further improve the performance of protein RSA predic-
tion. This predictor is based on our newly established customized deep 
multi-view feature learning (DMVFL) framework that can extract 
discriminative information embedded in multiple single-view features. 
The DMVFL framework employs four sequence-based single-view fea-
tures, i.e., position-specific scoring matrix, position-specific frequency 
matrix, predicted secondary structure, and roughly predicted three-state 
RSA probability, to effectively learn feature information. For each 
single-view feature, a sub neural network module, which is composed of 
two layers of bidirectional long short-term memory recurrent neural 
networks (BiLSTM), two layers of squeeze-and-excitation (SENet), and 
three fully-connected hidden layers (FC), is used to transform a single- 
view feature to a more discriminative feature. The four transformed 
single-view features are then coalesced and fed into a new sub neural 
network module, which is composed of two layers of SENet and three 
layers of FC (refer to the section of “Architecture of the DMVFL-RSA 
Framework” for detail). In addition, the predictor DMVFL-RSA uses a 
newly designed multiple feedback mechanism to improve the accuracy 
and generalization ability. Experimental results show that DMVFL-RSA 
outperforms other existing state-of-the-art discrete-valued and real- 

valued predictors, which is attributed to the proposed DMVFL frame-
work, the applied multiple feedback mechanism, and the sensitivity of 
the sequence-based single-view features. The web server of DMVFL-RSA 
can be freely accessed for academic use at https://jun-csbio.github.io/D 
MVFL-RSA/. 

2. Materials and methods 

2.1. Benchmark data sets 

A new dataset containing a training set and an independent valida-
tion set, denoted as TR10310 and TEST524, is constructed to evaluate 
the performance of RSA prediction. First, all protein chains released by 
RCSB Protein Data Bank (PDB) before November 10, 2019 are collected. 
After the exclusion of proteins with less than 30 residues or discontin-
uous 3D structure information, a dataset of 344,080 protein chains is 
obtained. The maximal pairwise sequence identity of the dataset protein 
chains is culled to 25% by using CD-HIT [31] program, and the obtained 
10,310 protein chains are employed to constitute a training dataset 
called TR10310. To collect the independent validation set, we extract all 
protein chains deposited into PDB after November 10, 2019. The pro-
teins with less than 30 residues or discontinuous 3D structure informa-
tion are also removed. Again, the maximal pairwise sequence identity of 
the extracted protein chains is reduced to 25%. Furthermore, we also 
remove these proteins that each of them shares >25% identity to a 
protein chain in the training data set, i.e., TR10310. The remaining 524 
protein chains constitute the independent validation set, called 
TEST524. 

To further evaluate the performance of RSA prediction, the following 
34 available target protein data are collected from the 14th Community 
Wide Experiment on the Critical Assessment of Techniques for Protein 
Structure Prediction (CASP14) to form an independent validation data 
set (called CASP14set) and further verify the performance of DMVFL- 
RSA and other existing predictors: T1024, T1025, T1026, T1027, 
T1029, T1030, T1031, T1032, T1033, T1035, T1036s1, T1037, T1038, 
T1039, T1040, T1041, T1042, T1043, T1044, T1046s1, T1046s2, 
T1049, T1050, T1054, T1056, T1064, T1067, T1073, T1074, T1079, 
T1080, T1082, T1090, and T1099. In CASP14set, there are 19 free 
modelling (FM) target proteins and 15 template-based modelling target 
proteins. All FM targets are selected to constitute one subset called 
CASP14set-Hard and the other targets are selected to compose another 
subset called CASP14set-Easy. Supplemental Table S1 lists the target 
proteins in the two subsets. 

For each protein in the above datasets, the ground-truth solvent 
accessible surface area (ASAi) of its ith residue is first calculated by DSSP 
program (Version 2.0.4) [32] based on its experimental 3D structure. 
The RSA value (RSAi) of the ith residue, which is the true label value of 
interest in this study, is then obtained via dividing ASAi by the maximum 
solvent accessible surface area (ASAMAX

i ) of the amino acid type of the ith 
residue. However, there is no standard for maximum solvent accessi-
bility value. GLY-X-GLY extended tripeptides have been used in previous 
works [14,15,33]. Simply, the RSA value (RSAi) of each residue could be 
calculated as: 

RSAi =
ASAi

ASAMAX
i

× 100%. (1)  

2.2. Feature representation 

In this study, to effectively predict the protein RSA from protein 
sequence information, four feature views, i.e., position-specific scoring 
matrix, position-specific frequency matrix, predicted secondary struc-
ture, and roughly predicted three-state RSA probability, are employed to 
encode the feature representation of each residue. 
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2.2.1. Position-specific scoring matrix (PSSM) 
The PSSM of a protein, which is achieved by PSI-BLAST [23] pro-

gram, contains the important evolutionary information that implies 
whether one residue is conserved in its family of related proteins. PSSM 
can substantially improve the overall performance for protein RSA 
prediction [14,15,18,19,34]. In this study, the PSSM profile for protein 
sequence is built by using the PSI-BLAST [23] to search the 
non-redundant database through three iterations with 0.001 as the 
E-value cutoff for multiple sequence alignment against the query 
sequence. The obtained PSSM is further normalized with the logistic 
function: 

f (x)=
1

1 + exp( − x)
, (2)  

where x is the score derived from the PSSM profile. 

2.2.2. Position-specific frequency matrix (PSFM) 
Besides PSSM, position-specific frequency matrix (PSFM), which is 

proven to increase the accuracy of predicting protein 1D properties [10, 
35,36], is also employed to dig out the protein evolutionary information 
for reflecting the residue conservation and improving the performance 
of protein RSA prediction. To obtain the PSFM profile, for each query 
protein sequence with LQ amino acid residues, HHblits [37], a fast and 
accurate sequence alignment tool, is utilized to search against Uni-
clust30 [38] database through three iterations, with 0.001 used as the 
E-value cutoff for generating the multiple sequence alignment (MSA) 
profile, which contains N sequences aligned to the query sequence. 
Based on the MSA profile, the corresponding PSFM profile with a size of 
LQ × 21 is calculated as follows: 

Pi,j =
1
N
∑N

n=1
σ
(
MSAn

i ,Rj
)
, (3)  

where Pi,j is the ith row and jth column element of PSFM profile; MSAn
i 

represents the residue type (including gap type) at the ith position of the 
nth aligned sequence in the MSA profile; i = 1,2, …, LQ and n = 1,2, …, 
N, Rj is the type of the jth element of the set of 20 naturally-occurring 
residue types and one gap type, j = 1,2, …, 21; and σ(MSAn

i ,Rj) = 1 if 

MSAn
i is same as Rj, otherwise, σ(MSAn

i ,Rj) = 0. 

2.2.3. Predicted secondary structure (PSS) 
Protein secondary structure (PSS) information can help improve the 

performance for protein RSA prediction [8,15]. In this study, PSS in-
formation is also employed and obtained using PSIPRED (Version 3.2.1) 
[39] software, which predicts the probability that each residue in a 
protein sequence belongs to three secondary structure classes (coil (C), 
helix (H), and strand (E)). For a protein sequence with LQ residues, the 
PSIPRED outputs an LQ × 3 probability matrix, which represents the 
predicted secondary structure information of the protein. 

2.2.4. Roughly predicted three-state RSA probability (RPRSA) 
To dig out more useful feature information, a new threading-based 

predictor, called TBP, is designed and employed to roughly predict the 
three-state RSA (RPRSA), i.e., exposed (E), intermediate (I), and buried 
(B), probability information of protein residues. For each query protein 

with LQ residues, in TBP, its PSFM profile, which is denoted by PQ =

{PQ
i,j}

LQ ,21
i=1,j=1 

and generated in the section of “Position-Specific Frequency 

Matrix,” is employed to search against a newly collected database called 
PRSA-DB to search for distantly homologous proteins. In PRSA-DB, the 

PSFM profile (PDB = {PDB
k,j }

LDB ,21
k=1,j=1

) and three-state RSA 

(SolDB = {SolDB
k }

LDB

k=1, SolDB
k ∈ {E, I, B}) of each database protein are 

previously generated. The details of generating PRSA-DB could be found 
in Supplemental Text S1. 

To detect distantly homologous proteins, inspired by S-SITE [40], the 
query PSFM profile, i.e., PQ, is compared with the PSFM profile, i.e., PDB, 
of each database protein in PRSA-DB by using the Needleman-Wunsch 
dynamic programming algorithm [41] to obtain the optimal residue 
alignment based on the residue similar matrix (SM = {SMi,k}

LQ ,LDB

i=1,k=1). 
The similar score (SMi,k) of aligning the ith residue in the query to the 
kth residue in the database protein is simply calculated as 

SMi,k =
∑21

j
PQ

i,jP
DB
k,j

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
∑21

j
PQ

i,jP
Q
i,j

)

×

(
∑21

j
PDB

k,j P
DB
k,j

)√
√
√
√ , (4) 

Fig. 1. Module of two-layer bidirectional long short-term memory recurrent neural networks. (a) Internal connections of two-layer BiLSTM networks. (b) Inner 
connections of long short-term memory neural network cell. 
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where PQ
i,j denotes the ith row and jth column element in PQ, and PDB

k,j 

represents the kth row and jth column element in PDB. The alignment 
quality (AQ) between the query protein and the database protein is 
calculated by 

AQ=
∑Nali

n
SMaliQn ,aliDB

n

/
̅̅̅̅̅̅̅̅̅̅̅̅̅
LQLDB

√
, (5)  

where Nali is the number of the aligned residue pairs, aliQn and aliDB
n 

represent the indexes of two residues, which form the nth aligned pair, in 
the query and database proteins. 

Each database protein in PRSA-DB with a AQ value above a threshold 
(TAQ) and a sequence identity <30% to the query protein is selected as 
one distantly homologous protein of the query. TAQ is set to 0.5 in this 
study. Suppose there are D eligible database proteins, the roughly pre-
dicted three-state relative solvent accessibility probabilities, i.e., RPE

i , 
RPI

i , and RPB
i ) of the ith residue of the query protein could be easily 

calculated as 

RPS
i =

∑D

d
AQd ×

∑N
d
ali

n
σ
(
i, aliQd,n

)
× σ
(
S, SolDB

d,aliDB
d,n

)
/
∑D

d
AQd, S

∈ {E, I, B}, (6)  

where AQdis the alignment quality between the query and the dth 
selected database proteins; Nd

ali is the number of the aligned residue 
pairs; aliQd,n and aliDB

d,n represent the indexes of two residues forming the 
nth aligned pair in the query and the dth selected database proteins, 
respectively; and SolDB

d,aliDB
d,n 

is the solvent accessibility state belonging to 

the set of E, I, and B of the aliDB
d,n-th residue of the dth selected database 

protein. σ(a,b) = 1, if a = b, otherwise, σ(a,b) = 0. 
According the above procedures, for each protein with LQ residues, 

the TBP could easily generate an LQ × 3 probability matrix, which rep-
resents the RPRSA probability information of this protein. 

Fig. 2. Module of squeeze-and-excitation network.  

Fig. 3. Architecture of the proposed DMVFL-RSA. (a) Multi-view Feature Representation; (b) Architecture of the DMVFL framework.  

X.-Q. Fan et al.                                                                                                                                                                                                                                  



Analytical Biochemistry 631 (2021) 114358

5

2.3. Bidirectional long short-term memory recurrent neural networks 
(BiLSTM) 

Given that the RSA information of each target residue is related to 
itself and to other residues in the same protein, extracting available 
feature information from the whole protein is important for accurately 
predicting the RSA of each residue. Sliding window technique is usually 
employed to extract the feature information [14,15,18] of a residue. 
However, the sliding window technique can only capture the informa-
tion of the target residue and its neighbor residues, but cannot capture 
the information related to the target residue on the whole protein. In this 
study, BiLSTM [42] is employed to extract discriminative information 
related to each target residue on the whole protein. Inspired by the fact 
that a two-layer BiLSTM can learn context-dependent information more 
effectively [43,44], we use a two-layer BiLSTM framework in this study, 
as shown in Fig. 1a. Each layer contains several long short-term memory 
neural network (LSTM) cells [24]. Fig. 1b demonstrates the inner con-
nections of each LSTM cell. The LSTM cell mainly includes three basic 
gates, i.e., an input gate, a forget get, and an output gate. The forget gate 
can decide what information will be thrown away from the cell state. 
When the cell state is updating, the input gate can decide what new 
information can be stored in the cell state, and the output gate decides 
what information can be output based on the cell state. The detail 
description of LSTM could be found in Supplemental Text S2. 

2.4. Squeeze-and-Excitation Network (SENet) 

Four single-view features, i.e., PSSM, PSFM, PSS, and RPRSA, are 
used to predict the protein RSA. SENet [45] is used to recalibrate the 
original feature representation during the training phase and extract 
discriminative information from the above single-view features. The 
architecture of the SENet is shown in Fig. 2. For a given input feature X, a 
linear transformation operator Ftr is first used to transform X to a new 
feature representation U. A squeeze operation is then employed to 
transform U as a channel descriptor via aggregating features across their 
spatial dimension. This descriptor produces an embedding of the global 
distribution of channel-wise feature responses, thus allowing informa-
tion from the global receptive field of the network to be used by all of its 
layers. The squeeze operation is followed by an excitation operation, a 
simple self-gating mechanism that takes the embedding as the input and 
produces a collection of per-channel modulation weights. These weights 
are then applied to the feature U to generate the output feature Û of the 
SENet block [45], and this output be fed directly into the subsequent 
layers of the network. 

2.5. Architecture of the DMVFL-RSA framework 

In this study, a customized deep multi-view feature learning frame-
work (DMVFL) is designed to extract the discriminative information 
from the above four single-view features (see Fig. 3a), i.e., PSSM, PSS, 
RPRSA, and PSFM. As shown in Fig. 3b, DMVFL contains five sub- 
pipelines named I, II, III, Ⅳ, and Ⅴ. 

In the architecture of the DMVFL framework, the sub-pipelines I and 
Ⅳ correspond to the input features of the same shape, are set the same 
model hyperparameters, including two BiLSTM layers (denoted as 
“BiLSTM-300 × 256” and “BiLSTM-512 × 512”), two SENet layers 
(denoted as “SENet-1024” and “SENet-512”), and three fully-connected 
(FC) layers (denoted as “FC-1024 × 512,” “FC-512 × 256,” and “FC-256 
× 1”). Similarly, the sub-pipelines II and III are also set the same model 
hyperparameters, including two BiLSTM layers (denoted as “BiLSTM-45 
× 32” and “BiLSTM-64 × 64”), two SENet layers (denoted as “SENet- 
128” and “SENet-64”), and three FC layers (denoted as “FC-128 × 64,” 
“FC-64 × 32,” and “FC-32 × 1”). Besides, to dig out the fusion feature of 
the four single-view features above, we also design a sub-pipeline, called 
pipeline Ⅴ. The output features of the first FC layers of sub-pipelines I, II, 

III, and Ⅳ are fused as the input of sub-pipeline Ⅴ. The sub-pipeline Ⅴ 
includes two SENet layers (denoted as “SENet-1152” and “SENet-512”) 
and three FC layers (denoted as “FC-1152 × 512,” “FC-512 × 256,” and 
“FC-256 × 1”). It is noted that, although the output of sub-pipeline V is 
employed as the final prediction result, the other four outputs of sub- 
pipeline I, II, III, and IV are also employed to calculate the loss value 
during the training procedure for extracting more discriminative feature 
information (see Section 2.6). 

All nodes of the above-mentioned FC layers are activated by using 
hyperbolic tangent function. The output of each FC layer is normalized 
with batch instance normalization [46]. In the training phase, a multiple 
feedback mechanism is newly designed and applied to tune the 
parameter values of the DMVFL framework. The detail description of 
multiple feedback mechanism could be found in Section 2.6. To reduce 
network overfitting, a dropout strategy [47] is utilized. In this study, we 
use the strategy of grid search and adjust the network’s hyper-
parameters, i.e., learning rate and dropout ratio, by observing the model 
performance on the training dataset TR10310 over five-fold cross--
validation tests. Finally, the optimal/sub-optimal values of learning rate 
and dropout ratio are tuned to be 0.001 and 0.5, respectively. The 
software of Pytorch (version 1.3.1) [48] is adopted to implement and 
tune the DMVFL framework on this cluster with one NVIDIA Titan RTX 
GPU. 

2.6. Multiple feedback mechanism 

The training of the DMVFL framework includes three cascaded 
phases, i.e., forward propagation, backward propagation, and gradient 
application. The backward propagation, which is a dynamic process, 
determines the optimal quality of the model parameters. In this study, to 
improve the generalization ability and prediction performance of the 
DMVFL model, a customized multiple backward propagation mecha-
nism, which considers the combination of multiple factors to determine 
the optimal model parameters, is designed, named multiple feedback 
mechanism. 

Different single-view features should contain varying impact factors 
to affect the prediction performance of protein RSA information. In 
multiple feedback mechanism, five output results of predicted RSA 
values (see Fig. 3b), i.e., RSA-①, RSA-②, RSA-③, RSA-④, and RSA-⑤, 
are first calculated by the five sub-pipelines during training to fully 
utilize the impact factors of different feature views. The mean squared 
error function is then adopted to compute five loss values i.e., loss-①, 
loss-②, loss-③, loss-④, and loss-⑤ corresponding to RSA-①, RSA-②, 
RSA-③, RSA-④, and RSA-⑤. The minimizing loss function for each back 
propagation is defined as: 

Minimize
∑T

t=1

1
2
(y − yt)

2
, (7)  

where yt is the predicted RSA value, y is the actual RSA value of one 
target residue, and T is the number of sub-pipelines (T = 5). Back 
propagation is then utilized to minimize the loss function. Finally, the 
optimization method of Adam algorithm [49] is employed to estimate 
the optimal parameters of the DMVFL model. 

2.7. Assessment metrics 

Two widely used evaluation indexes, i.e., mean absolute error (MAE) 
and Pearson correlation coefficient (PCC), are employed to assess the 
performance for real-valued RSA prediction. MAE is used to quantita-
tively measure the deviation between the predicted and actual RSA 
values of each protein. PCC is applied to quantify the relationship be-
tween the predicted and actual RSA values of each protein, and its value 
was between − 1 and 1. The two indexes can be calculated by following 
equations: 
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MAE=

∑N
i=1

⃒
⃒RSApi − RSAri

⃒
⃒

N
× 100, (8)  

PCC=

∑N
i=1

(
RSApi − RSAp

)(
RSAri − RSAr

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
RSApi − RSAp

)2∑N
i=1

(
RSAri − RSAr

)2
√ , (9)  

where N is the length of the query protein sequence; RSApi and RSAri are 
the predicted and actual RSA values of the ith residue in the query 
protein, respectively; and RSAp and RSAr are the corresponding average 
values of the entire query protein, respectively. The correlation between 
RSApi and RSAri increases with the PCC value. When PCC is − 1, the 
correlation is fully negative. When PCC is 1, the correlation is fully 
positive. 

Two evaluation indexes, i.e., accuracy score Qi(i is 2, 3, and 4 for 
two-state, three-state, and four-state predictions, respectively) and 
Matthew’s correlation coefficient (MCC), are adopted to measure the 
performance for discrete-valued RSA prediction. These indexes could be 
calculated by: 

Qi =
Ncor

N
× 100, (10)  

MCC=
TP× TN − FP× FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)

√ , (11)  

where N is the total number of residues in a protein chain; Ncor is the 
number of correctly predicted residues; and TP, TN, FP, and FN denote 
true positive, true negative, false positive, and false negative, respec-
tively. 

3. Results and discussions 

3.1. Prediction performance of different features 

The real-valued RSA prediction performance of the four single-view 
features (i.e., PSSM, PSFM, PSS, and RPRSA) and three serially com-
bined features (i.e., PSSM + PSFM, PSSM + PSFM + PSS, and PSSM +
PSFM + PSS + RPRSA) is investigated in this section. Each feature is 
evaluated by performing five-fold cross-validation tests on TR10310 and 
independent validation tests on TEST524. Note that, in this section, each 
prediction model is trained using a specially designed single-pipeline 
learning framework (see Supplemental Text S3), which simply in-
tegrates three neural network units, i.e., BiLSTM, SENet, and FC. Table 1 
summarizes the average PCC and MAE values of different features on 
TR10310 and TEST524. 

From Table 1, it is easy to see that the four single-view features, i.e., 
PSSM, PSFM, PSS, and RPRSA, are all useful for predicting the real- 
valued RSA. The average PCC values of the four single-view features 
are all greater than 0.40 on both two data sets. It is also easily found that 
PSSM + PSFM + PSS + RPRSA achieves the best performance. The 
average PCC and MAE values of PSSM + PSFM + PSS + RPRSA are 0.62 
and 17.2 on TR10310, which are 1.61% and 15.6% better than those of 
the second-best feature, i.e., PSSM + PSFM + PSS, and 10.7% and 18.8% 
better than those of the best single-view feature, i.e., PSSM, respectively. 
The difference between PSSM + PSFM + PSS + RPRSA and PSSM in the 
PCC values is statistically significant which has a p-value <0.01 in the 
Student’s t-test. The similar comparison results could also be found on 
TEST524. These experimental results demonstrate that the four single- 
view features contain complementary information. 

3.2. Enhancing performance by usage of multi-pipeline learning 
framework 

To extract more discriminative information from the four used 
single-view features, i.e., PSSM, PSFM, PSS, and RPRSA, in this study, a 
new multi-pipeline learning framework is designed to learn the RSA 
prediction model rather than the above simple single-pipeline learning 
framework. The detail description of the multi-pipeline learning 
framework could be found in Supplemental Text S4. Actually, the multi- 
pipeline learning framework can be seen as a simplified version of 
DMVFL. To evaluate the efficacy of this multi-pipeline learning frame-
work, the single-pipeline learning framework is employed as a control 
method. Based on the four single-view features, the RSA prediction 
performance of single- and multi-pipeline learning frameworks are 
evaluated on TR10310 over five-fold cross-validation tests and on 
TEST524 over independent validation tests. Table 2 illustrates the 
average values of PCC and MAE of single- and multi-pipeline learning 
frameworks. 

From Table 2, we can find that the multi-pipeline learning frame-
work is superior to single-pipeline learning framework with regard to 
the two evaluation indexes, i.e., PCC and MAE, on both TR10310 and 

Table 1 
Performance comparison of different features on TR10310 over five-fold cross- 
validation tests and on TEST524 over independent validation tests using the 
single-pipeline learning framework.  

Data set Feature PCC MAE 

value p-value value p-value 

TR10310 PSSM 0.56 6.7 ×
10− 3 

21.2 1.4 ×
10− 4 

PSFM 0.54 5.3 ×
10− 4 

22.3 7.7 ×
10− 3 

PSS 0.45 2.4 ×
10− 6 

26.7 2.9 ×
10− 9 

RPRSA 0.48 5.3 ×
10− 4 

23.1 3.2 ×
10− 7 

PSSM + PSFM 0.60 4.3 ×
10− 2 

20.9 3.1 ×
10− 3 

PSSM + PSFM + PSS 0.61 2.1 ×
10− 2 

20.4 8.4 ×
10− 3 

PSSM + PSFM + PSS +
RPRSA 

0.62  17.2  

TEST524 PSSM 0.57 3.6 ×
10− 3 

17.3 1.9 ×
10− 1 

PSFM 0.56 2.1 ×
10− 3 

18.6 5.1 ×
10− 1 

PSS 0.41 7.6 ×
10− 3 

20.7 8.2 ×
10− 3 

RPRSA 0.43 2.2 ×
10− 3 

18.4 7.5 ×
10− 2 

PSSM + PSFM 0.61 1.1 ×
10− 2 

16.7 2.6 ×
10− 1 

PSSM + PSFM + PSS 0.62 1.7 ×
10− 2 

16.9 4.5 ×
10− 1 

PSSM + PSFM + PSS +
RPRSA 

0.64  16.6  

The p-values in Student’s t-test are calculated for the differences between PSSM 
+ PSFM + PSS + RPRSA and other features. Bold fonts highlight the best value in 
each category. 

Table 2 
Performance comparison between single-pipeline and multi-pipeline learning 
frameworks on TR10310 over five-fold cross-validation tests and on TEST524 
over independent validation tests.  

Data set Learning Framework PCC MAE 

Value p-value Value p-value 

TR10310 Single-pipeline 0.62 1.1 × 10− 2 17.2 3.7 × 10− 4 

Multi-pipeline 0.64  16.9  
TEST524 Single-pipeline 0.64 5.1 × 10− 3 16.6 4.6 × 10− 4 

Multi-pipeline 0.67  16.2  

The p-values in Student’s t-test are calculated for the differences between Multi- 
and Single-pipeline learning frameworks. Bold fonts highlight the best value in 
each category. 
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TEST524. The average PCC values of multi-pipeline learning framework 
are 0.64 and 0.67 on TR10310 and TEST524, which are 3.2% and 4.7% 
higher than those of single-pipeline learning framework, respectively. 
The average MAE values of multi-pipeline learning framework are 16.9 
and 16.2 on TR10310 and TEST524, which are 1.7% and 2.4% better 
than those of single-pipeline learning framework, respectively. The 
differences in PCC and MAE values are statistically significant which 
have p-values<0.02. The above comparison results demonstrate that 
using multi-pipeline learning framework could extract more discrimi-
native information from multi-view features to enhance the RSA pre-
diction performance. 

3.3. Enhancing performance by usage of multiple feedback mechanism 

To evaluate the efficiency of multiple feedback mechanism, we 
compare the real-valued RSA prediction performance of the DMVFL 
framework with and without using multiple feedback mechanism on 
TR10310 over five-fold cross-validation tests and on TEST524 over 

independent validation tests. The DMVFL framework without using 
multiple feedback mechanism is essentially the same as the multi- 
pipeline learning framework used in Section 3.2. Table 3 presents the 
performance comparison results. 

From Table 3, it is easy to find that the DMVFL framework with using 
multiple feedback mechanism is superior to without using multiple 
feedback mechanism concerning the two evaluation indexes, i.e., PCC 
and MAE, on both TR10310 and TEST524. The average PCC values of 
with using multiple feedback mechanism are 0.66 and 0.71 on TR10310 
and TEST524, which are 3.1% and 6.0% higher than those of without 
using multiple feedback mechanism, respectively. The average MAE 
values of with using multiple feedback mechanism are 15.7 and 14.0 on 
TR10310 and TEST524, which are 7.1% and 13.6% better than those of 
without using multiple feedback mechanism, respectively. The differ-
ence in PCC values is statistically significant which has p-values<0.05. 
The above comparison results demonstrate that using multiple feedback 
mechanism could help the DMVFL framework to enhance the RSA pre-
diction performance. 

3.4. Performance comparison with other existing methods 

3.4.1. Performance comparison on real-valued RSA prediction 
In this section, the real-valued RSA prediction efficiency of DMVFL-RSA 

is experimentally verified by comparing it with other existing state-of-the- 
art solvent accessibility predictors, including, SANN [14], SPIDER2 [18], 
SPIDER3 [19], SPIDER3-Single [20], NetSurfP-2.0 [21], and SPOT-1D [22] 
on two independent validation data sets, i.e., TEST524 and CASP14set. In 
order to obtain the prediction results of the other existing predictors 
quickly, the standalone programs of them, i.e., SANN, SPIDER2, SPIDER3, 
SPIDER3-Single, NetSurfP-2.0, and SPOT-1D, are downloaded from the 
corresponding websites, i.e., https://github.com/newtonjoo/sann, https 
://servers.sparks-lab.org/downloads/SPIDER2_local.tgz, https://servers. 
sparks-lab.org/downloads/SPIDER3_local.tgz, https://servers.sparks-lab. 

Table 3 
Performance comparison between the DMVFL framework with and without 
using multiple feedback mechanism (MFM) on TR10310 over five-fold cross- 
validation tests and on TEST524 over independent validation tests.  

Data set With/without using 
MFM 

PCC MAE 

value p-value Value p-value 

TR10310 Without 0.64 3.8 ×
10− 2 

16.9 5.2 ×
10− 2 

With 0.66  15.7  
TEST524 Without 0.67 1.1 ×

10− 3 
16.2 8.6 ×

10− 2 

With 0.71  14.0  

The p-values in Student’s t-test are calculated for the differences between with 
and without using MFM. Bold fonts highlight the best value in each category. 

Fig. 4. Head-to-head comparisons of PCC values between DMVFL-RSA and other state-of-the-art predictors on TEST524. The numbers in each panel represent the 
number of points in the upper and lower triangles. 
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org/downloads/SPIDER3-Single_np.tgz, http://www.cbs.dtu.dk/ser 
vices/NetSurfP-2.0/, and https://servers.sparks-lab.org/downloads 
/SPOT-1D-local.tar.gz, respectively. The prediction model of 
DMVFL-RSA is learned on the training data set, i.e., TR10310, using the 
parameters tuned on TR10310 over five-fold cross-validation tests. The 
performance comparison results of DMVFL-RSA and other existing 
state-of-the-art predictors on TEST524 and CASP14set are separately 
demonstrated in Figs. 4 and 5. It is noted that, on CASP14set, the full chain 
sequences of all protein targets are employed as inputs to feed into each of 
the above predictors, rather than the single domain sequence to obtain the 
RSA prediction results, although the prediction performance is solely 
evaluated on the single domain regions with known label information. 

By observing Fig. 4, we can easily find that, out of the 524 test 
proteins, there are 431, 436, 367, 493, 201, and 209 cases where 
DMVFL-RSA has equal or higher PCC than SANN, SPIDER2, SPIDER3, 
SPIDER3-Single, NetSurfP-2.0, and SPOT-1D, respectively. Although 
there are 322 and 315 cases where DMVFL-RSA has lower PCC than 
NetSurfP-2.0 and SPOT-1D, respectively, DMVFL-RSA could achieve a 
significantly higher PCC values on several cases, e.g., 6yj4J. Supple-
mentary Table S2 also demonstrates the performance comparison be-
tween DMVFL-RSA and other existing state-of-the-art predictors on 
TEST524. From Table S2, it is easy to see that DMVFL-RSA outperforms 
other existing predictors concerning two evaluation indexes, i.e., PCC 
and MAE. The PCC and MAE values of DMVFL-RSA are 0.71 and 14.0, 
which are 10.9% and 19.5% better than those of SANN, 12.7% and 
14.1% better than those of SPIDER2, 7.6% and 6.0% better than those of 
SPIDER3, 29.1% and 23.1% better than those of SPIDER3-Single, 1.4% 
and 0.7% better than those of NetSurfP-2.0, and 2.9% and 1.4% better 
than those of SPOT-1D, respectively. The differences between DMVFL- 
RSA and the existing predictors, i.e., SANN, SPIDER2, SPIDER3-Single, 

NetSurfP-2.0, and SPOT-1D, in MAE are statistically significant which 
have p-values<10− 5. 

By visiting Fig. 5, it is easy to find that, among the 34 target proteins 
on CASP14set, DMVFL-RSA has 29, 24, 20, 27, 15, and 13 cases with 
higher PCC values than SANN, SPIDER2, SPIDER3, SPIDER3-Single, 
NetSurfP-2.0, and SPOT-1D, respectively. Out of the 19 target proteins 
in CASP14set-Hard, there are 16, 11, 9, 14, 8, and 5 cases where DMVFL- 
RSA has equal or higher PCC than SANN, SPIDER2, SPIDER3, SPIDER3- 
Single, NetSurfP-2.0, and SPOT-1D, respectively. Out of the 15 targets in 
CASP14set-Easy, there are 13, 13, 11, 13, 7, and 8 cases where DMVFL- 
RSA has equal or higher PCC than SANN, SPIDER2, SPIDER3, SPIDER3- 
Single, NetSurfP-2.0, and SPOT-1D, respectively. It is not escaped from 
our notice that DMVFL-RSA achieve a slightly lower overall perfor-
mance than NetSurfP-2.0 and SPOT-1D on CASP14set (see Supplemen-
tary Table S3). The potential reason is that the other prediction tasks, i. 
e., protein secondary structure and backbone angles prediction, of 
NetSurfP-2.0 and SPOT-1D should help them to enhance the protein RSA 
prediction performance. Developing multi-task prediction method is a 
good way to further enhance the protein RSA prediction performance. 

3.4.2. Performance comparison on two-state RSA prediction 
In this section, the efficiency of the proposed DMVFL-RSA is evalu-

ated on the two-state (i.e., exposed and buried) RSA prediction. To 
predict the two-state RSA value, DMVFL-RSA first predicts the real- 
valued RSA for each query protein residue. The predicted real-valued 
RSA is transformed into two states of seven different types using 
different predefined thresholds, i.e., 5%, 10%, 20%, 25%, 30%, 40%, 
and 50% [15,34]. Taking threshold of 5% as an example, if the 
real-valued RSA of a residue is no less than 5%, it is regarded as an 
exposed residue, otherwise it is classified into the buried class [15]. Six 

Fig. 5. Head-to-head comparisons of PCC values between DMVFL-RSA and other state-of-the-art predictors on CASP14set and its subsets, i.e., CASP14set-Hard and 
CASP14set-Easy. Each black (or blue) circle means one template-based modelling (or free modelling) protein target in the CASP14set. The numbers in each panel 
represent the number of points in the upper and lower triangles. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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state-of-the-art RSA predictors, i.e., SANN [14], SPIDER2 [18], SPIDER3 
[19], SPIDER3-Single [20], NetSurfP-2.0 [21], and SPOT-1D [22] are 
used as control in this section. Tables 4 and 5 summarize the comparison 
results on TEST524 and CASP14set, respectively. 

By observing Table 4, it is easy to find that DMVFL-RSA is consis-
tently superior to the six control predictors with regard to the Q2 eval-
uation indexes with the seven different two-state thresholds on 
TEST524. The Q2 values of DMVFL-RSA for the seven different thresh-
olds, i.e., 5%, 10%, 20%, 25%, 30%, 40%, and 50% are 86.0%, 84.9%, 
81.8%, 81.0%, 80.3%, 79.1%, and 78.3%, respectively, which are 0.5%, 
1.4%, 0.5%, 0.6%, 0.9%, 0.4%, and 0.3% higher than the second-best 
values, respectively. Supplementary Table S4 demonstrates the p- 
values in Student’s t-test for the differences in Q2 values with different 
thresholds between DMVFL-RSA and other six existing predictors on 
TEST524. 

By visiting Table 5, we can find that DMVFL-RSA obtains Q2> 73% 
for all the seven two-state thresholds on CASP14set and its subsets, i.e., 
CASP14set-Hard and CASP14set-Easy. On CASP14set, DMVFL-RSA 
achieves the highest values, i.e., 85.4, 80.8, 78.2, 76.8, and 75.5, on 
the Q2 evaluation indexes for thresholds 5%, 10%, 20%, 25%, and 30%, 
although DMVFL-RSA achieves slightly lower Q2 values (i.e., 73.6% and 
75.4%) on the thresholds of 40% and 50%. On CASP14set-Hard, 
DMVFL-RSA achieves the best performance concerning the Q2 evalua-
tion index for thresholds 5% and obtains the second-best performance 

concerning Q2 for 20% and 25%. On CASP14set-Easy, DMVFL-RSA gains 
the best performance concerning the Q2 evaluation indexes for thresh-
olds 10%, 20%, 25%, 30%, 40%, and 50% and obtains the second-best 
performance concerning Q2 for 5%. Supplementary Table S5 lists the 
p-values in Student’s t-test for the differences in Q2 values with different 
thresholds between DMVFL-RSA and other six existing predictors on 
CASP14set and its subsets, i.e., CASP14set-Hard and CASP14set-Easy. 

3.4.3. Performance comparison on three-state RSA prediction 
In this section, the efficiencies of DMVFL-RSA, SANN, SPIDER2, 

SPIDER3, SPIDER3-Single, NetSurfP-2.0, and SPOT-1D on three-state (i. 
e., exposed, intermediate, and buried) RSA prediction are evaluated. 
Each predictor, e.g., DMVFL-RSA, first predicts the real-valued RSA for 
each query protein residue. The predicted real-valued RSA is then 
transformed into three states using a general pair of thresholds, i.e., 9% 
and 36% [14,50]. If the real-valued RSA of a residue is more than 36%, 
then it is regarded as the residue with exposed (E) state. If the 
real-valued RSA of a residue is less than 9%, then it is labeled as the state 
of buried (B). If the real-valued RSA of a residue is between 9% (inclu-
sive) than 36% (exclusive), then it is classified as the state of interme-
diate (I). The three-state RSA prediction performances of DMVFL-RSA, 
SANN, SPIDER2, SPIDER3, SPIDER3-Single, NetSurfP-2.0, and SPOT-1D 
generated on TEST524 and CASP14set are shown in Fig. 6. 

By observing Fig. 6, we can find that DMVFL-RSA outperforms other 
six state-of-the-art predictors concerning the Q3 and MCCs of B and E 
evaluation indexes on both TEST524 and CASP14set. The values of Q3 
and MCCs of B, I, and E of DMVFL-RSA are 67.0 and 60.0, 0.51 and 0.41, 
0.22 and 0.19, and 0.52 and 0.49 on TEST524 and CASP14set, respec-
tively (see details in Supplementary Tables S6 and S7). On CASP14set- 
Hard, DMVFL-RSA achieves the highest value (0.36) of MCC of B and 
gains the second-best value (0.19) of MCC of I (see Supplementary 
Table S8). On CASP14set-Easy, DMVFL-RSA obtains the highest values 
(60.5 and 0.52) of Q3 and MCC of E and gains the second-best value 
(0.46) of MCC of B (see Table S9). Supplementary Tables S6, S7, S8, and 
S9 present the p-values in Student’s t-test for the differences between 
DMVFL-RSA and other six existing predictors on TEST524, CASP14set, 
CASP14set-Hard, and CASP14set-Easy, respectively. 

3.4.4. Performance comparison on four-state RSA prediction 
In this section, the performance of the proposed DMVFL-RSA is 

Table 4 
Two-state discrete-valued RSA prediction performance of DMVFL-RSA, SANN, 
SPIDER2, SPIDER3, SPIDER3-Single, NetSurfP-2.0, and SPOT-1D under seven 
different two-state thresholds, i.e., 5%, 10%, 20%, 25%, 30%, 40%, and 50%, on 
TEST524.  

Predictor Q2 

5% 10% 20% 25% 30% 40% 50% 

SANN 84.0 80.9 76.3 74.3 72.9 72.2 74.5 
SPIDER2 84.2 82.9 80.8 78.1 76.7 74.7 75.6 
SPIDER3 85.0 82.9 80.8 80.4 79.6 78.8 78.0 
SPIDER3-Single 80.3 75.6 73.9 74.0 73.6 73.3 74.2 
NetSurfP-2.0 85.6 83.3 81.2 80.2 80.1 78.2 78.1 
SPOT-1D 85.1 83.7 81.4 80.5 79.4 77.8 77.9 
DMVFL-RSA 86.0 84.9 81.8 81.0 80.3 79.1 78.3 

Bold fonts highlight the best value in each category. 

Table 5 
Two-state discrete-valued RSA prediction performance of DMVFL-RSA, SANN, SPIDER2, SPIDER3, SPIDER3-Single, NetSurfP-2.0, and SPOT-1D under seven different 
two-state thresholds, i.e., 5%, 10%, 20%, 25%, 30%, 40%, and 50%, on CASP14set and its subsets, i.e., CASP14set-Hard and CASP14set-Easy.  

Data set Predictor Q2 

5% 10% 20% 25% 30% 40% 50% 

CASP14set SANN 83.4 78.7 75.1 74.4 73.1 72.6 74.0 
SPIDER2 83.8 80.1 76.3 75.3 74.5 73.6 75.8 
SPIDER3 84.2 80.2 76.8 75.6 75.1 74.4 75.5 
SPIDER3-Single 82.1 76.5 73.4 72.4 72.2 72.0 74.1 
NetSurfP-2.0 84.3 79.7 76.9 75.9 75.4 74.6 74.9 
SPOT-1D 85.0 80.4 77.4 76.3 75.2 75.0 75.6 
DMVFL-RSA 85.4 80.8 78.2 76.8 75.5 73.6 75.4 

CASP14set-Hard SANN 85.1 79.2 74.9 74.2 72.0 70.0 71.4 
SPIDER2 85.7 81.4 76.3 75.0 73.7 72.7 73.7 
SPIDER3 85.7 81.2 76.1 74.6 74.2 73.1 72.9 
SPIDER3-Single 85.1 79.4 74.7 73.2 72.3 70.8 72.1 
NetSurfP-2.0 84.9 79.1 76.2 75.3 75.7 74.2 75.1 
SPOT-1D 84.2 80.6 77.6 76.5 75.1 74.7 74.6 
DMVFL-RSA 86.4 81.0 77.5 75.7 74.0 71.8 73.3 

CASP14set-Easy SANN 81.5 77.8 75.1 74.2 74.4 75.3 77.6 
SPIDER2 82.1 78.6 76.5 75.0 74.0 75.1 77.9 
SPIDER3 82.5 79.1 77.4 77.4 76.1 75.2 77.5 
SPIDER3-Single 78.4 72.4 70.5 71.6 72.6 72.1 76.4 
NetSurfP-2.0 83.7 80.3 77.8 76.6 75.0 75.1 74.7 
SPOT-1D 85.9 80.2 77.1 76.1 75.5 75.3 76.6 
DMVFL-RSA 84.1 80.6 79.0 78.1 77.3 75.9 78.2 

Bold fonts highlight the best value in each category. 
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examined in terms of four-state (i.e., very exposed, somewhat exposed, 
somewhat buried, and very buried) RSA prediction. DMVFL-RSA first 
predicts the real-valued RSA value of each query protein residue. As 
described in PaleAle5.0 [10], which is a four-state discrete-valued RSA 

predictor, the above predicted real-valued RSA value is mapped into 
four states using three thresholds, i.e., 4%, 25%, and 50%. The perfor-
mances of DMVFL-RSA, SANN [14], SPIDER2 [18], SPIDER3 [19], 
SPIDER3-Single [20], PaleAle5.0 [10], NetSurfP-2.0 [21], and SPOT-1D 

Fig. 6. Three-state discrete-valued prediction performance of DMVFL-RSA, SANN, SPIDER2, SPIDER3, SPIDER3-Single, NetSurfP-2.0, and SPOT-1D on TEST524, 
CASP14set, CASP14set-Hard, and CASP14set-Easy. (A) On TEST524. (B) On CASP14set. (C) On CASP14set-Hard. (D) On CASP14set-Easy. 

Table 6 
Four-state discrete-valued prediction performances of DMVFL-RSA, SANN, SPIDER2, SPIDER3, SPIDER3-Single, NetSurfP-2.0, and SPOT-1D on TEST524, CASP14set, 
CASP14set-hard, and CASP14set-Easy.  

Predictor TEST524 CASP14set CASP14set-Hard CASP14set-Easy 

Q4 p-value Q4 p-value Q4 p-value Q4 p-value 

SANN 45.9 7.5 × 10− 7 44.5 4.7 × 10− 2 43.2 2.1 × 10− 1 46.6 1.1 × 10− 1 

SPIDER2 48.3 4.7 × 10− 14 48.0 8.8 × 10− 1 48.4 3.2 × 10− 1 47.7 1.6 × 10− 1 

SPIDER3 52.8 3.9 × 10− 6 48.1 8.9 × 10− 1 47.7 5.1 × 10− 1 50.3 6.9 × 10− 1 

SPIDER3-Single 40.6 6.5 × 10− 42 43.8 1.1 × 10− 2 42.6 1.7 × 10− 1 40.0 3.5 × 10− 4 

PaleAle5.0 47.4 1.6 × 10− 31 45.9 5.1 × 10− 2 46.9 7.2 × 10− 1 44.8 3.1 × 10− 3 

NetSurfP-2.0 55.8 7.4 × 10− 3 48.5 1.6 × 10− 2 49.6 2.7 × 10− 2 47.5 1.7 × 10− 1 

SPOT-1D 55.3 6.7 × 10− 3 49.2 1.2 × 10− 1 49.4 2.0 × 10− 1 49.2 2.3 × 10− 1 

DMVFL-RSA 55.9  49.5  47.2  51.4  

The p-values in Student’s t-test are calculated for the differences between DMVFL-RSA and other predictors. Bold fonts highlight the best value in each category. 
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[22] are generated on TEST524, CASP14set, CASP14set-Hard, and 
CASP14set-Easy. Their prediction results are summarized in Table 6. 

By visiting Table 6, it is clearly demonstrated that DMVFL-RSA 
outperforms all of the seven existing state-of-the-art predictors, i.e., 
SANN, SPIDER2, SPIDER3, SPIDER3-Single, PaleAle5.0, NetSurfP-2.0, 
and SPOT-1D concerning Q4 on three independent validation sets, i.e., 
TEST524, CASP14set, and CASP14set-Easy. Taking TEST524 as an 
example, the Q4 value of DMVFL-RSA is 55.9%, which is 21.8%, 15.7%, 

5.9%, 37.7%, 17.9%, 0.2%, and 1.2% higher than that of SANN, SPI-
DER2, SPIDER3, SPIDER3-Single, PaleAle5.0, NetSurfP-2.0, and SPOT- 
1D, respectively. It is not escaped from our notice that DMVFL-RSA 
achieve a lower Q4 (47.2) on CASP14set-Hard. The potential reason 
should be that the pattern knowledge of the free modelling (FM) pro-
teins dose not be completely learned by the prediction model of DMVFL- 
RSA trained on TR10310. 

Figure 7. RSA prediction performance of different predictors, i.e., DMVFL-RSA, SANN, SPIDER2, SPIDER3, SPIDER3-Single, NetSurfP-2.0, and SPOT-1D, for 6yj4J. 
On each subgraph, the dotted line indicates the predicted RSA values, and the solid line indicates the actual RSA values. 

Fig. 8. RSA prediction performance of different predictors, i.e., DMVFL-RSA, SANN, SPIDER2, SPIDER3, SPIDER3-Single, NetSurfP-2.0, and SPOT-1D, for T1035. On 
each subgraph, the dotted line indicates the predicted RSA values, and the solid line indicates the actual RSA values. 
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3.5. Case studies 

In this section, two proteins with IDs 6yj4J and T1035, which are 
selected from TEST524 and CASP14set, respectively, are used for case 
studies. Figs. 7 and 8 show how well the real-valued RSA values are 
predicted by the seven predictors, i.e., DMVFL-RSA, SANN [14], SPI-
DER2 [18], SPIDER3 [19], SPIDER3-Single [20], NetSurfP-2.0 [21], and 
SPOT-1D [22]. The actual RSA values calculated by DSSP program [32] 
are fitted based on the experimental 3D structures of the two proteins. 

Figs. 7 and 8 show that, in the two cases, the majority of DMVFL- 
RSA-predicted RSA values are in good agreement with the correspond-
ing experimental RSA values. On 6yj4J and T1035, DMVFL-RSA ach-
ieves the PCC values of 0.66 and 0.65, which are 34.7% and 20.4%, 
214.3% and 58.5%, 106.3% and 8.3%, 187.0% and 20.4%, 32.0% and 
8.3%, and 22.3% and 16.1% higher than those of SANN [14], SPIDER2 
[18], SPIDER3 [19], SPIDER3-Single [20], NetSurfP-2.0 [21], and 
SPOT-1D [22], respectively. 

4. Conclusions 

Accurately predicting the RSA is crucial in understanding the 3D 
structure and biological function of the protein. In this study, a new 
protein RSA predictor named DMVFL-RSA is designed and implemented 
to enhance the performance for protein RSA prediction. Experimental 
results show that the proposed DMVFL-RSA outperforms other existing 
state-of-the-art predictors. The superior performance of DMVFL-RSA can 
be attributed to several reasons, including a well-designed deep multi- 
view feature learning framework, an appropriate benchmark dataset, a 
multiple feedback mechanism, and a discriminative feature design. For 
ease of use, the proposed DMVFL-RSA has been implemented as a web 
server and is now available at https://jun-csbio.github.io/DMVFL-RSA/. 

Our future work are directed toward the following four main di-
rections to further improve the performance of protein RSA prediction: 
(1) developing useful strategies to extract discriminative single-view 
feature; (2) developing more accurate prediction models to predict the 
related feature source information, such as effective evolutionary in-
formation based on multiple sequence alignment [51]; (3) developing an 
accurate method by combining DMVFL-RSA and other state-of-the-art 
protein RSA prediction methods; (4) employing the multi-task learning 
algorithms [52] to predict protein solvent accessibility, protein sec-
ondary structure, protein backbone angles, and protein-protein in-
teractions [53]. Furthermore, the predicted RSA information will be 
implemented to help enhance the accuracy of protein 3D structure 
prediction and the efficiency of protein design. Although the 
DMVFL-RSA still has room for optimization, we believe that it would be 
one of the most accurate tools for protein RSA prediction. 
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